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ABSTRACT

Host-side flash cache is a new tier in computer architecture that can archive
high 1/0 performance and low latency in enterprise server systems. In contrast
to conventional methods that use flash memory for storage, some approaches
employ flash memory as cache. However, existing flash cache systems show
low hit rate and high latency in the write-intensive online transaction
processing (OLTP) server. The main idea of this thesis is on the utilization of
the write buffer in the flash cache. In this thesis, an efficient flash cache
management system based on solid state cache (SSC) is proposed. The
proposed system utilizes an admission policy that employs the access count in
the write buffer and allocates the appropriate type of block in flash memory. It
is thereby possible to retain valuable data and reduce unnecessary writing in
flash memory. To validate the proposed system, TPC-C benchmark [13] was
installed on a Linux server and the I/O traces were extracted. In addition, SSC
simulator was implemented and simulation was performed on it. Experimental
results show that the proposed system improves the hit rate by up to 10% and
reduces the normalized average response time from 0.9 to 0.76 compared with

FlashTier [3].

Keywords — write buffer, Solid state cache (SSC), Flash cache
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Chapter 1

Introduction

Flash cache is primarily used in networked storage environments. In fact,
a new tier has emerged between the main memory (DRAM) and storage
area network (SAN). Flash memory has faster I/O performance than
magnetic disk (HDD) and it costs less than main memory (DRAM). Flash
cache is used in hyper computing servers, cloud servers, and data centers
that are commercially used in Facebook and Google. Naturally, there exist
various access patterns of workloads depending on the usage environment.
In the online transaction processing (OLTP) server, the ratio of small size
random write requests is greater than the ratio in other servers.
Accordingly, flash cache is added to improve the endurance and hit rate by
effectively managing small-size write requests in the OLTP Server. Figure
1.1 shows that relation between hit rate of flash cache and I/0 performance
of system with networked storage. Koller et al. [1] mentioned that cache
miss degrades throughput of flash device. Solid state drive (SSD) has
similar architecture to the flash cache and it is used as a fast storage

device.
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Figure 1.1. I/O performance impact of hit rate

Flash memory has two key characteristics. Firstly, it is characterized as
‘erase-before-write’ memory; i.e., it cannot overwrite without erasing the
block containing the page. This feature of flash memory has recently drawn
many researchers’ attention on the out-of-place update and garbage
collection (GC). Secondly, the flash memory cell has a limited number of
erase counts. The maximum number of erases per block is 100,000 in
single-level cell (SLC). It is even less in multi-level cell (MLC) (< 10,000)
and in three-level cell (TLC) (< 3,000). In order to extend the lifespan of
flash memory, many techniques have been developed and the wear-leveling
1s commonly accepted method among them.

Using flash memory as a cache has different behaviors that distinguish
this application them from its conventional usage as storage. First, data in

the cache may present elsewhere in the system. Thus, it has some



flexibility in terms of how it manages data. Second, a cache requires
consistency. A cache must ensure that it never returns stale data; however,
it can also return nothing if no data is present. Thus, writing data of logical
block address (LBA) that have a few read requests and many write
requests wastes space because the data have already been written
somewhere. On the other hands, there are also LBAs that have a high
potential of being read. This results in a lack of space for the latter data, as
well as the generation of more unnecessary invalid pages by submitting
continual write requests and invoking frequent garbage collection.

In recent years, there has been tremendous interest in exploring the flash
cache system. Mercury [2] proposed host-side flash caching that provides a
cache for various virtual machines over networked storage protocols. Their
approach focuses on flash caching in a virtualized, shared storage data
center. FlashTier [3] is a flash cache layer based on block-level caching. It
uses a custom flash translation layer (FTL) that is optimized for caching. In
particular, FlashTier decreases the amount of writing by replacing the
native garbage collection with silent eviction. Additionally, HEC [4]
adopted flash-layer write amplification (FLWA) and cache-layer write
amplification (CLWA) as measurement units and experiments for
endurance improvement. HEC strived to reduce the write amplification
results from GC, cache admission policies, and the cache eviction policies.

The above methods provide block-level caching. In fact, they manage
coarse-grained cached data. Block-level caching can write in block units
when a cache miss occurs. It means that only one cache miss can load a

whole block of many data that may not be used later. If only one page of a



block has a read request, and the other pages have no requests, the spaces
occupied by the pages with no requests will be wasted. Consequently, it
leads into a lack of space and calls garbage collection. Therefore, a new
approach that manages fine-grained data in a page-level caching is
proposed. Since most request size of write-intensive OLTP server
workloads (TPC-C) [13] is 8KB, the proposed method writes in the size of
corresponding request units. Furthermore, the proposed method is efficient
in terms of space utilization in flash memory block.

In this thesis, an efficient write buffer management using the flash cache
was proposed. In addition, a method of managing block in flash cache to
retain data that have a high potential of reading was presented. In short,
the main contributions of this thesis are outlined below.

- The write buffer was used for analyzing read/write counts for the LBA
and mitigate pressure due to repetitive write requests in the
workload.

- The proposed method manages flash memory by classifying blocks
into two types for effective eviction. In this method, data that have a
high possibility of reading are preserved in the flash cache.

- The proposed method utilizes capacity for retaining more data by
page-level caching. As a result, it produces efficient garbage collection
and improvement in high hit rates.

The remainder of this thesis is organized as follows. Chapter 2 describes
the background and motivation of this research. Chapter 3 describes the
proposed method. Chapter 4 describes experimental results. Finally,

chapter 5 presents conclusions.



Chapter 2

Background

2.1 Host-side Flash Cache

Host-side flash cache resides in layers between SAN and DRAM.
Deployment of host-side flash cache can improve I/O performance in
enterprise server. In fact, flash cache fills the gap between HDD and
DRAM with high I/O performance and low cost. In typical enterprise
systems, the host server employs solid state drive (SSD) directly attached
to cache data at the SAN backend. In other words, host-side flash cache
removes confusion in the SAN backend and produces overall performance
improvement by removing network latency. Inherent differences exist
between the flash-based cache and DRAM-based cache. Firstly, the flash
caches is located underneath the DRAM in the storage hierarchy. Therefore,
it stores data that are less referenced. Secondly, flash cache is used instead
of DRAM as the caching media. Although flash cache has a finite number of
program/erase (P/E) cycles, DRAM-based cache does not have the same
write cycle limitation. Thus, the write cycle limitation is relevant to the

device lifetime.



The proposed method of flash cache has two main advantages. Because
SAN requires immense access latency, data are returned when possible in
flash cache or DRAM for obtaining high I/O performance of the application.
Thus, the first advantage comes from high hit rate by retaining data that
have a high potential of read in near future. The second advantage comes
from reducing garbage collection that affects I/O performance. In general,
flash cache predominantly runs at full capacity to achieve high hit rate.
Naturally, it requires garbage collection for reallocating space; moreover,
write amplification increases on account of valid page copy during garbage
collection. Furthermore, the garbage collection overhead further degrades
I/0 performance as more valid page copying occurs. Therefore, the proposed
method considers retaining data that have a high potential of read and

reducing garbage collection.

2.2 Access Patterns in the TPC-C Benchmark

The TPC-C benchmark is the OLTP benchmark. It is more complex than
the conventional OLTP benchmark because it is comprised of multiple
transactions and more complex database. Its database consists of nine table
types. TPC-C benchmark simulates a complete computing environment in
which a group of users executes transactions against the database
simultaneously. The workload involves a combination of five concurrent
transactions of different types. This workload contains a large number of
read/write requests and it calls small-size I/O operations (8 KB) that

randomly access the data spread over a wide portion of the disk.



Table 2.1. TPC-C Benchmark

Size Read Write Both types
8KB 65.70% 32.66% 98.36%
16KB 0.00% 1.49% 1.49%
Other sizes 0.00% 0.15% 0.15%
All sizes 65.71% 34.29% 100.00%

The ratio of read and write at various request size is described in Table 2.1.
As shown in Table 2.1, the ratio between the read and write requests of the
workload-extracted TPC-C benchmark is 1.9:1. As shown in Table 2.1,
TPC-C benchmark has a property of having more number of small size

write access than others.

2.3 FTL and Write Amplification

Over several decades, considerable research on FTL has been conducted
for obtaining high performance. For hybrid mapping, various FTLs exist,
such as FAST [5], BAST [6], SAST [7], and LAST [8]. For page-level
mapping, DFTL [9] was proposed to cache the frequently used mapping
table in the on-disk SRAM as a means of improving the address translation
performance. In addition, pn-FTL [10] adopted the p-tree on the mapping
table to reduce the memory footprint.

FTL performs out-of-place updates, thereby it leaves invalid pages. When
SSD has no free block, FTL operates garbage collection for setting aside
free spaces. In normal operation, the garbage collection erases the blocks

only after valid pages in the blocks are copied to another blocks. This



results in additional writes because the block of valid pages is copied.

In HEC, CLWA and FLWA are proposed measure of write amplification
in the flash cache. First, CLWA is computed as the ratio between the
cache-generated writes and the original workload writes. In other words, it
measures the amount of write amplification on cache misses. CLWA can be
significantly reduced by cache admission policies. Second, FLWA 1is the
ratio between the GC-generated writes and the original workload writes. It

can be affected by access pattern of workloads and GC policies.

2.4 Motivation

Recently, flash memory is often used as cache between main memory and
storage. The flash cache can reduce tremendous amount of storage access
with proper memory management. However, the native flash cache in
write-intensive OLTP server may suffer from significant performance
losses. Existing methods adopt an admission policy such as touch count and
selective sequential rejection (SSEQR). Touch count is not effective in
OLTP server because it allocates space for data only after a cache miss
occurs several times. SSEQR does not admit a long sequential request. It
can lead to an immense number of cache misses because unpermitted
large-size request may contain hot data.

The existing methods utilize the access count or size of request for cache
admission policy. However, those methods are inappropriate to determine
which data is copied into the flash cache especially with write-intensive

workload. The data that have a high potential of write and few potential of



read should not occupy the flash cache space. Even though these data
occupy flash cache, this method provides no benefits in system. Rather than
generating more invalid page, more garbage collection is required. In
write-through policy, the present of data in flash cache does not affect the
total time from write request to the completion because of writes in
networked storage. Thus, the admission policy of the proposed method does
not admit data that have a high write count in write buffer.

Garbage collection is another factor of serious performance loss in the
flash cache. When capacity of the flash cache is full, it must clean invalid
pages and erase the block or destage some blocks to set aside space through
garbage collection. One of the commercially available FTL is the FAST [5]
and it performs garbage collection with the sequential and random write
log blocks. FlashTier proposed the silent eviction replacing garbage
collection. Silent eviction selects the victim block with the least number of
valid pages and then the chosen victim block is erased without copying the
valid pages in the victim block. Accordingly, the method can reduce the
time of setting aside free space. Nevertheless, the silent eviction causes
frequent cache miss because it does not preserving valid pages that might
be read soon. Naturally, increasing the cache miss results in increasing
access on SAN. This causes declining IOPS (input/output operations per
second) and significantly high response time. It motivated this thesis

towards applying proper modification to the exiting silent eviction method.



Chapter 3

Flash cache management in OLTP server

A new flash cache management is described in this chapter. Figure 3.1
shows enterprise server system with the proposed flash cache. In Figure
3.1, the flash cache is located between main memory and networked
storage in server system architecture. A flash cache system includes write
buffer, cache controller, flash controller, and NAND flash device. The cache
controller controls the cached data with admission and eviction policies.
The flash controller not only manages NAND flash device but also performs
GC algorithm. The operating system directly maps the flash cache page,
and writes to the flash cache using the logical block address and offset. The
flash cache internally maps those addresses to physical locations. The
following six steps describes the life cycle of data in the proposed flash
cache.

1. Write buffer gets allocated only if the read/write request
trigger cache misses.

2. When the data in the write buffer are destaged, the data
could be written in the flash cache block by the admission

policy.

10



Flash Cache

J ’ 1/0 Requests (read, write) ‘
Processor k f
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Storage Area Network (HDD) | .. Controller NAND Flash

Figure 3.1. Flash cache architecture

3. Corresponding blocks are allocated depending on the type of
data which is either write-frequent data (WFD) or
read-frequent data (RFD),

4. The flash controller allocates pages in the block upon the size
of the request.

5. The flash controller notifies the cache controller of full in
NAND flash device, and then cache eviction policy chooses
the victim blocks.

6. The cache controller performs efficient eviction with the
write buffer if the victim block is read-frequent data block

(RFDB), and then erases the victim blocks.

11



The admission policy

Input: node pointer of each LBA in write buffer

If node-> write_count > Threshold_write && node -> read_count == 0 then
invlalid_data(lba);

else if node->read_count > Threshold_read | | node->write_count < Threshold_write then
ppa=allocate_RFDB(),

else
ppa=allocate_ WFDB(),

end

flash_write(ppa, node->data, node->lba);

Figure 3.2. The admission policy

3.1 Admission Policy with read/write count in the Write Buffer

The cache admission policy admits data except that of frequent writes. In
order to identify data of high potential writes, the flash cache records
read/write count of each LBA in write buffer. The flash cache manages a
list stored read/write count of each LBA in the write buffer. The list gets
updated when the read/write request corresponding with the LBA are
submitted. When the LBA are destaged on the write buffer, the admission
policy admits the data of the LBA by checking the list. In addition, the least
recently written (LRW) policy in write buffer is applied to retain WFED for a
long time. Figure 3.2 shows the detailed admission policy. First of all, if the
read count of the LBA is zero and the write count of the LBA is larger than
the fixed value, the data of LBA does not write to flash cache block. Next,

the admission policy classifies the LBA that could be written in flash cache

12



block into two types. The LBA is classified as RFD if the read count of the
LBA is larger than the fixed value, or the write count of LBA is smaller
than the fixed value. Lastly, the remaining data is considered as the WFD

and the admission policy allocates write-frequent data block (WFDB).

3.2 Eviction Policy

The eviction policy performs eviction in different ways depending on type
of blocks. The flash cache blocks are manages by splitting them into RFDBs
and WFDBs. In Figure 3.3, evictions of two block type is described and two
type of eviction is different. In order to retain data of high potential read,
the eviction policy evicts WFDB first. In WFDB, the eviction policy selects
the victim block with the largest number of invalid pages like silent
eviction and then the victim block is erased without copying the valid page.
When the eviction policy continuously evicts only WFDB blocks, there
would not be any WFDBs and then only RFDBs remain. For this reason,
the eviction policy maintains the number of WFDB that represents 10% of
the whole block in the flash cache. Accordingly, the eviction policy performs
eviction in RFDB if necessary. The efficient eviction chooses the victim
block with the largest number of invalid pages in RFDBs. As shown in 3.3,
valid pages contained in the victim block are written again in the write
buffer and then, the victim block gets erased. After some time, the
admission policy classifies the uploaded data into unpermitted data, or

RFD or, WED.

13



Victim block Free block Victim block Free block
Erase Erase
— —>
|
: l upload
V - valid page _
1~ invalid page Write buffer

Figure 3.3. Method of eviction in WFDB and RFDB

3.3 Flash memory block management

The admission policy classifies destaging data into two types and notifies
flash controller of the type of data, RFD and WFD. Figure 3.4 shows that
the proposed method divides the flash memory block into two type of blocks,
read-frequent and write-frequent data blocks. In RFDB, the flash controller
uses hybrid mapping method with log block, and it is similar to the method
of FAST. The flash controller uses log blocks for out-of-place update and
performs log block merge in RFDB when the number of log block reaches
up to its limit. On the other hand, the flash controller employs page-level
mapping without log block in WFDB. The flash controller just retains lots
of write-frequent data temporarily to prevent cache miss. Thus, there are
no log block merge operations because of low importance. If the write
request corresponding with the LBA that stored in WFDB are submitted, it
would be written in the write buffer and flash controller would mark the

page that are stored the data in WFDB as invalid.

14
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data block)
— 10%

Figure 3.4. Management in flash memory block

3.4 Page level caching

Page level caching is applied to the proposed method. Figure 3.5 and 3.6
show block level caching and page level caching in server system. As shown
in Figure 3.5, flash cache allocates space by the block. In contrary to block
level caching, it can allocate flash memory space in request size unit. Page
level caching can handle a lot of cached data.

In addition, page level caching is different from page level mapping. In
other words, unit of caching method would be page if mapping method is

block mapping. In this thesis, mapping table uses hah map. If write buffer

15
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Figure 3.6. Page level caching
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is full, flash cache destages data in write buffer and allocates a appreciate
space and then each combination of physical block address and offset is
independently mapped with combination of local block address and offset.

Accordingly, mapping method of RFDB can be hybrid mapping.

16



Chapter 4

Experimental Results

4.1 Simulation Environments

The proposed method is evaluated by the simulator that is based on the
solid state cache (SSC) simulator in FlashSim [11]. The simulator composes
of a write buffer, a cache controller, and a flash controller. This simulator
includes write buffer management schemes, admission policies, and
eviction policies. An SSC simulator was emulated with the parameters [14]

in Table 4.1.

4.1.1 Trace of TPC-C benchmark

TPC-C benchmark was installed on a Linux server. An 8 GB database of
TPC-C benchmark was generated through Mysql, which uses InnoDB as a
storage engine and default page size is 16 KB. An I/O trace of the TPC-C

benchmark was extracted in four hours run with the configuration.

17



Table 4.1. Emulation parameter

Page read 65 Control delay 10

Page write 85 Page size 4096 bytes
Block erase 1000 Page / erase block 64

Seq. Read 585 MB/sec Rand. Read 149,700 IOPS
Seq. Write 124 MB/sec Rand. Write 15,300 IOPS

In addition, an I/O trace of the TPC-C benchmark was extracted by
compressing the page size to 8 KB since most of read request size in the

TPC-C benchmark is 8 KB.

4.1.2 Cache Controller and Flash Controller in simulator

This program simulates the behavior of cache controller depending on the
write buffer scheme, the cache mode, the admission policy, and the eviction
policy. The cache controller in the simulator mainly operates two functions.
Firstly, it manages cached data with mapping table in memory. Secondly, it
determines which data gets admitted or evicted. Moreover, the cache
controller provides only a write-through policy. For that reason, dirty page
information is not stored; it only writes the data. For comparison purpose,
the simulator supports least recently used (LRU) policy of write buffer,
various cache method, and eviction.

The flash controller simulates a NAND flash device that is similar to a
SSD. It consists of a FTL, GC, and other capabilities to manage flash device.

In order to reduce response time, the flash controller stores the maps of

18



valid, invalid, and erase counts in memory. In addition, the flash controller
supports various GC method and mapping method. The flash controller
reserves 10% of total capacity for the overprovisioned blocks and maintains

7% of their capacity for log blocks.

4.1.3 Memory Consumption

The flash cache stores the mapping table from the LBA to the physical
address of the flash cache using a hash map. The hash map is similar to
that of FlashTier; however, the values of key and physical address are
different. The hash map has a higher speed and lower space overhead than
the hash table of flashcache [12]. The flash cache commercially maintains
the whole mapping table in its own memory (DRAM). The proposed system
consumes approximately 8 bytes per key of cached page. Thus, it requires
more memory than the method of block-level mapping.

In this simulation, the 4 GB flash cache required 1,048,576 entries.
Because the size of each entry is 8 bytes, the total mapping table requires
7.5 MB. If the flash cache size is 512 GB, it would require 960 MB. The
address map of native method [2] is implemented using an array of 4 byte
entries. This results in a 768 MB address map in 512 GB cache device. A
tradeoff exists between the hit rate and memory consumption in enterprise
systems. Additionally, the proposed system manages the list of data stored
in the write buffer. This list requires 16 KB when the write buffer size is 8
MB because the write buffer has 2,048 entries and each entry requires 8

bytes.
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4.2 Simulation Analysis

The merits and overheads of the proposed method are compared to
FlashTier bearing three key questions in mind;
1) How well does the proposed method retain read-frequent data?
2) How accurately does the proposed method evict unnecessary data?

3) To what extent does the proposed method reduce GC count?

To verify the effectiveness of the proposed method, trace-driven simulations
were conducted. In this experiments, each flash cache block consists of 64
pages by default and the write buffer size ranges from 8M to 16M bytes.
Simulation were conducted on the TPC-C benchmark suit in the following

four cases.

1) write buffer size — 8 MB, database page size of workload — 16 KB
2) write buffer size — 16 MB, database page size of workload — 16 KB
3) write buffer size — 8 MB, database page size of workload — 8 KB

4) write buffer size — 16 MB, database page size of workload — 8 KB

20



The simulation results of flash cache on TPC-benchmark (16 KB and 8
KB) for FlashTier and the proposed method are in Table 5.1 and 5.2. The
hit rate, GC count, CLWA, FLWA, total write amplification factor (TWAF),
and normalized average response time are contained in Table 5.1 and Table
5.2.

The simulation results of hit rate in both FlashTier and the proposed
method are illustrated in Figure 5.1. The hit rate of the proposed method
outperforms FlashTier by up to 10%. The proposed method achieves high
hit rate (up to 90%) in simulation results with the trace of compressed page
size. Moreover, the hit rate of the proposed method increases up to 96% in
the case of the 16 MB write buffer. The proposed method achieves low
TWAFs in all of cases. In 16 KB size of trace, the proposed method reduces
TWAF from 33.24 to 27.88. In addition, TWAF decreased from 15.65 to
11.83 in 8 KB size of traces. Moreover, CLWA and FLWA were compared.
The proposed method significantly reduces CLWA. On the other hands,
FLWA of the proposed method larger than that of FlahTier. The proposed
method decreases GC count. In 16 KB traces, GC count of the proposed
method 1s reduced by up to 51%. Additionally, GC count of the proposed
method is reduced by 40% in trace with compressed page size. Comparison
results of normalized average response time in both FlashTier and the
proposed method are described in Figure 5.2. The normalized average
response time of the proposed method is improved from 0.9 to 0.76 in

Figure 5.2(a).
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Table 5.1. Simulation results of TPC-C benchmark (16 KB)

Flash Write Hit rate GC CLWA | FLWA | TWAF Normalized average
Cache Buffer Size count response time
FlashTier 0MB 85.0 % 199,975 35.00 13.33 48.34 1.0
8 MB 84.7 % 89,225 28.91 5.42 34.34 0.904
16 MB 84.93 % 87,750 28.53 4.70 33.24 0.896
Proposed 8 MB 94.6 % 42,587 25.46 2.55 28.01 0.765
Method 16 MB 94.58 % 42,125 25.34 2.53 27.88 0.764

Table 5.2. Simulation results of TPC-C benchmark (8 KB)

Flash Write Hit rate GC CLWA | FLWA | TWAF Normalized average
Cache Buffer Size count response time
FlashTier 0 MB 81.10% 316,888 4.94 24.34 29.29 1.0
8 MB 85.79% 113,240 15.65 0.0003 15.65 0.84
16 MB 85.69% 116,833 15.76 0.0003 15.76 0.84
Proposed 8 MB 91.25% 77,677 2.16 9.67 11.83 0.80
Method 16 MB 96.27% 70,725 2.16 10.55 12.72 0.77
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There are two major reasons for the improvement. Firstly, benefits of the
proposed method come from identifying the read-frequent data. And then,
the proposed method manages flash cache by classifying block into WFDB
and RFDB. Thus, retaining data that are allocated in RFDB reduces cache
misses. Accordingly, hit rate increases and a substantial amount of writes
decreases. Secondly, the proposed method allocates space in accordance
with request size. Therefore, write amplification factor and GC count
decrease by utilizing the overall flash cache block. On the other hands,
FlashTier uses block-level caching and evicts the cached data too early, as
shown in the FLWA of FlashTier. The overhead of the proposed method
includes the computation time of the admission policy and recording

read/write count of write buffer. However, they are negligible.
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Chapter 5

Conclusions

Existing flash caches are widely employed in enterprise server system for
achieving high I/O performance. However, traditional flash caches incur
performance degradation due to small-sized read/write requests. A new
method of flash cache management improves overall performance
especially in write-intensive OLTP server.

The key insight is that flash cache has some flexibility in terms of how it
manages data. Contrary to conventional usage as storage, it does not
require to preserve the data of frequent write. Thus, the proposed method
classifies incoming data by using the read/write count during the write
buffer, and it then writes on affordable space in flash cache block.

In this thesis, SSC simulator was implemented to validate the proposed
method and it performed simulations several times. The experimental
results showed a comparison of FlashTier and the proposed method. The
proposed method improves the hit rate by 10% for flash cache. In addition,
it obtains half of the GC count and reduces a substantial amount of writing
on flash memory block. Lastly, it reduces normalized average response time

from 0.9 to 0.76.
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