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초 록 

 

호스트사이드 플래시 캐시는 하이엔드 엔터프라이즈 서버 

시스템에서 높은 I/O 성능과 낮은 지연을 위하여 컴퓨터 구조에 

나타난 새로운 계층이다. 플래시 메모리가 저장장치로 쓰이는 

기존의 방법과 달리, 플래시 메모리가 캐시로서 사용되는 데 몇 

가지 방법이 사용된다. 그러나, 쓰기가 집중적인 온라인 트랜잭션 

프로세싱 (OLTP) 서버에서 기존의 플래시 캐시 시스템은 낮은 

성능을 보인다. 따라서, 이 논문에서는 플래시 캐시에 쓰기 버퍼의 

관리에 초점을 두었다. 솔리드 스테이트 캐시 (SSC) 기반의 

효율적인 플래시 캐시 관리 시스템을 제안한다. 제안된 시스템은 

쓰기 버퍼에서의 접근 횟수를 사용하는 캐시 입장 정책을 활용하고, 

이에 따라 적절한 유형의 플래시 메모리 블락을 할당한다. 이렇게 

함으로써, 쓸모 있는 데이터가 캐시내에 유지되고, 플래시 메모리에 

불필요한 쓰기가 감소한다. 제안한 방법을 검증하기 위해, 리눅스 

서버에 TPC-C 벤치 마크 [13] 를 설치했고, I/O 트레이스들을 

추출했다. 또한 시뮬레이터를 구현하여 시뮬레이션을 수행했다. 

FlashTier [3]와 비교한 실험 결과는 제안한 방법이 hit 비율을 

10%이상 향상시키고, 일반화된 평균 응답시간을 0.9에서 0.76만큼 

감소시켰다.  

 

키워드 –  쓰기 버퍼, 솔리드 스테이트 캐시 (SSC), 플래시 캐시 
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ABSTRACT 

 

Host-side flash cache is a new tier in computer architecture that can archive 

high I/O performance and low latency in enterprise server systems. In contrast 

to conventional methods that use flash memory for storage, some approaches 

employ flash memory as cache. However, existing flash cache systems show 

low hit rate and high latency in the write-intensive online transaction 

processing (OLTP) server. The main idea of this thesis is on the utilization of 

the write buffer in the flash cache. In this thesis, an efficient flash cache 

management system based on solid state cache (SSC) is proposed. The 

proposed system utilizes an admission policy that employs the access count in 

the write buffer and allocates the appropriate type of block in flash memory. It 

is thereby possible to retain valuable data and reduce unnecessary writing in 

flash memory. To validate the proposed system, TPC-C benchmark [13] was 

installed on a Linux server and the I/O traces were extracted. In addition, SSC 

simulator was implemented and simulation was performed on it. Experimental 

results show that the proposed system improves the hit rate by up to 10% and 

reduces the normalized average response time from 0.9 to 0.76 compared with 

FlashTier [3]. 

 

Keywords – write buffer, Solid state cache (SSC), Flash cache 
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Chapter 1 

 

Introduction 

 

Flash cache is primarily used in networked storage environments. In fact, 

a new tier has emerged between the main memory (DRAM) and storage 

area network (SAN). Flash memory has faster I/O performance than 

magnetic disk (HDD) and it costs less than main memory (DRAM). Flash 

cache is used in hyper computing servers, cloud servers, and data centers 

that are commercially used in Facebook and Google. Naturally, there exist 

various access patterns of workloads depending on the usage environment. 

In the online transaction processing (OLTP) server, the ratio of small size 

random write requests is greater than the ratio in other servers. 

Accordingly, flash cache is added to improve the endurance and hit rate by 

effectively managing small-size write requests in the OLTP Server. Figure 

1.1 shows that relation between hit rate of flash cache and I/O performance 

of system with networked storage. Koller et al. [1] mentioned that cache 

miss degrades throughput of flash device. Solid state drive (SSD) has 

similar architecture to the flash cache and it is used as a fast storage 

device.  
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Figure 1.1. I/O performance impact of hit rate 

 

Flash memory has two key characteristics. Firstly, it is characterized as 

‘erase-before-write’ memory; i.e., it cannot overwrite without erasing the 

block containing the page. This feature of flash memory has recently drawn 

many researchers’ attention on the out-of-place update and garbage 

collection (GC). Secondly, the flash memory cell has a limited number of 

erase counts. The maximum number of erases per block is 100,000 in 

single-level cell (SLC). It is even less in multi-level cell (MLC) (≤ 10,000) 

and in three-level cell (TLC) (≤ 3,000). In order to extend the lifespan of 

flash memory, many techniques have been developed and the wear-leveling 

is commonly accepted method among them. 

Using flash memory as a cache has different behaviors that distinguish 

this application them from its conventional usage as storage. First, data in 

the cache may present elsewhere in the system. Thus, it has some 
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flexibility in terms of how it manages data. Second, a cache requires 

consistency. A cache must ensure that it never returns stale data; however, 

it can also return nothing if no data is present. Thus, writing data of logical 

block address (LBA) that have a few read requests and many write 

requests wastes space because the data have already been written 

somewhere. On the other hands, there are also LBAs that have a high 

potential of being read. This results in a lack of space for the latter data, as 

well as the generation of more unnecessary invalid pages by submitting 

continual write requests and invoking frequent garbage collection. 

In recent years, there has been tremendous interest in exploring the flash 

cache system. Mercury [2] proposed host-side flash caching that provides a 

cache for various virtual machines over networked storage protocols. Their 

approach focuses on flash caching in a virtualized, shared storage data 

center. FlashTier [3] is a flash cache layer based on block-level caching. It 

uses a custom flash translation layer (FTL) that is optimized for caching. In 

particular, FlashTier decreases the amount of writing by replacing the 

native garbage collection with silent eviction. Additionally, HEC [4] 

adopted flash-layer write amplification (FLWA) and cache-layer write 

amplification (CLWA) as measurement units and experiments for 

endurance improvement. HEC strived to reduce the write amplification 

results from GC, cache admission policies, and the cache eviction policies. 

The above methods provide block-level caching. In fact, they manage 

coarse-grained cached data. Block-level caching can write in block units 

when a cache miss occurs. It means that only one cache miss can load a 

whole block of many data that may not be used later. If only one page of a 
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block has a read request, and the other pages have no requests, the spaces 

occupied by the pages with no requests will be wasted. Consequently, it 

leads into a lack of space and calls garbage collection. Therefore, a new 

approach that manages fine-grained data in a page-level caching is 

proposed. Since most request size of write-intensive OLTP server 

workloads (TPC-C) [13] is 8KB, the proposed method writes in the size of 

corresponding request units. Furthermore, the proposed method is efficient 

in terms of space utilization in flash memory block. 

In this thesis, an efficient write buffer management using the flash cache 

was proposed. In addition, a method of managing block in flash cache to 

retain data that have a high potential of reading was presented. In short, 

the main contributions of this thesis are outlined below. 

- The write buffer was used for analyzing read/write counts for the LBA 

and mitigate pressure due to repetitive write requests in the 

workload. 

- The proposed method manages flash memory by classifying blocks 

into two types for effective eviction. In this method, data that have a 

high possibility of reading are preserved in the flash cache. 

- The proposed method utilizes capacity for retaining more data by 

page-level caching. As a result, it produces efficient garbage collection 

and improvement in high hit rates. 

The remainder of this thesis is organized as follows. Chapter 2 describes 

the background and motivation of this research. Chapter 3 describes the 

proposed method. Chapter 4 describes experimental results. Finally, 

chapter 5 presents conclusions.
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Chapter 2 

 

Background 

 

2.1  Host-side Flash Cache 

 

Host-side flash cache resides in layers between SAN and DRAM. 

Deployment of host-side flash cache can improve I/O performance in 

enterprise server. In fact, flash cache fills the gap between HDD and 

DRAM with high I/O performance and low cost. In typical enterprise 

systems, the host server employs solid state drive (SSD) directly attached 

to cache data at the SAN backend. In other words, host-side flash cache 

removes confusion in the SAN backend and produces overall performance 

improvement by removing network latency. Inherent differences exist 

between the flash-based cache and DRAM-based cache. Firstly, the flash 

caches is located underneath the DRAM in the storage hierarchy. Therefore, 

it stores data that are less referenced. Secondly, flash cache is used instead 

of DRAM as the caching media. Although flash cache has a finite number of 

program/erase (P/E) cycles, DRAM-based cache does not have the same 

write cycle limitation. Thus, the write cycle limitation is relevant to the 

device lifetime. 
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The proposed method of flash cache has two main advantages. Because 

SAN requires immense access latency, data are returned when possible in 

flash cache or DRAM for obtaining high I/O performance of the application. 

Thus, the first advantage comes from high hit rate by retaining data that 

have a high potential of read in near future. The second advantage comes 

from reducing garbage collection that affects I/O performance. In general, 

flash cache predominantly runs at full capacity to achieve high hit rate. 

Naturally, it requires garbage collection for reallocating space; moreover, 

write amplification increases on account of valid page copy during garbage 

collection. Furthermore, the garbage collection overhead further degrades 

I/O performance as more valid page copying occurs. Therefore, the proposed 

method considers retaining data that have a high potential of read and 

reducing garbage collection. 

 

2.2  Access Patterns in the TPC-C Benchmark 

 

The TPC-C benchmark is the OLTP benchmark. It is more complex than 

the conventional OLTP benchmark because it is comprised of multiple 

transactions and more complex database. Its database consists of nine table 

types. TPC-C benchmark simulates a complete computing environment in 

which a group of users executes transactions against the database 

simultaneously. The workload involves a combination of five concurrent 

transactions of different types. This workload contains a large number of 

read/write requests and it calls small-size I/O operations (8 KB) that 

randomly access the data spread over a wide portion of the disk.  
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Table 2.1. TPC-C Benchmark 

Size Read Write Both types 

8KB 65.70% 32.66% 98.36% 

16KB 0.00% 1.49% 1.49% 

Other sizes 0.00% 0.15% 0.15% 

All sizes 65.71% 34.29% 100.00% 

 

The ratio of read and write at various request size is described in Table 2.1. 

As shown in Table 2.1, the ratio between the read and write requests of the 

workload-extracted TPC-C benchmark is 1.9:1. As shown in Table 2.1, 

TPC-C benchmark has a property of having more number of small size 

write access than others. 

  

2.3  FTL and Write Amplification 

 

Over several decades, considerable research on FTL has been conducted 

for obtaining high performance. For hybrid mapping, various FTLs exist, 

such as FAST [5], BAST [6], SAST [7], and LAST [8]. For page-level 

mapping, DFTL [9] was proposed to cache the frequently used mapping 

table in the on-disk SRAM as a means of improving the address translation 

performance. In addition, μ-FTL [10] adopted the μ-tree on the mapping 

table to reduce the memory footprint. 

FTL performs out-of-place updates, thereby it leaves invalid pages. When 

SSD has no free block, FTL operates garbage collection for setting aside 

free spaces. In normal operation, the garbage collection erases the blocks 

only after valid pages in the blocks are copied to another blocks. This 
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results in additional writes because the block of valid pages is copied. 

In HEC, CLWA and FLWA are proposed measure of write amplification 

in the flash cache. First, CLWA is computed as the ratio between the 

cache-generated writes and the original workload writes. In other words, it 

measures the amount of write amplification on cache misses. CLWA can be 

significantly reduced by cache admission policies. Second, FLWA is the 

ratio between the GC-generated writes and the original workload writes. It 

can be affected by access pattern of workloads and GC policies.  

 

2.4  Motivation 

 

Recently, flash memory is often used as cache between main memory and 

storage. The flash cache can reduce tremendous amount of storage access 

with proper memory management. However, the native flash cache in 

write-intensive OLTP server may suffer from significant performance 

losses. Existing methods adopt an admission policy such as touch count and 

selective sequential rejection (SSEQR). Touch count is not effective in 

OLTP server because it allocates space for data only after a cache miss 

occurs several times. SSEQR does not admit a long sequential request. It 

can lead to an immense number of cache misses because unpermitted 

large-size request may contain hot data.  

The existing methods utilize the access count or size of request for cache 

admission policy. However, those methods are inappropriate to determine 

which data is copied into the flash cache especially with write-intensive 

workload. The data that have a high potential of write and few potential of 
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read should not occupy the flash cache space. Even though these data 

occupy flash cache, this method provides no benefits in system. Rather than 

generating more invalid page, more garbage collection is required. In 

write-through policy, the present of data in flash cache does not affect the 

total time from write request to the completion because of writes in 

networked storage. Thus, the admission policy of the proposed method does 

not admit data that have a high write count in write buffer. 

Garbage collection is another factor of serious performance loss in the 

flash cache. When capacity of the flash cache is full, it must clean invalid 

pages and erase the block or destage some blocks to set aside space through 

garbage collection. One of the commercially available FTL is the FAST [5] 

and it performs garbage collection with the sequential and random write 

log blocks. FlashTier proposed the silent eviction replacing garbage 

collection. Silent eviction selects the victim block with the least number of 

valid pages and then the chosen victim block is erased without copying the 

valid pages in the victim block. Accordingly, the method can reduce the 

time of setting aside free space. Nevertheless, the silent eviction causes 

frequent cache miss because it does not preserving valid pages that might 

be read soon. Naturally, increasing the cache miss results in increasing 

access on SAN. This causes declining IOPS (input/output operations per 

second) and significantly high response time. It motivated this thesis 

towards applying proper modification to the exiting silent eviction method. 
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Chapter 3 

 

Flash cache management in OLTP server 

 

A new flash cache management is described in this chapter. Figure 3.1 

shows enterprise server system with the proposed flash cache. In Figure 

3.1, the flash cache is located between main memory and networked 

storage in server system architecture. A flash cache system includes write 

buffer, cache controller, flash controller, and NAND flash device. The cache 

controller controls the cached data with admission and eviction policies. 

The flash controller not only manages NAND flash device but also performs 

GC algorithm. The operating system directly maps the flash cache page, 

and writes to the flash cache using the logical block address and offset. The 

flash cache internally maps those addresses to physical locations. The 

following six steps describes the life cycle of data in the proposed flash 

cache.  

1. Write buffer gets allocated only if the read/write request 

trigger cache misses.  

2. When the data in the write buffer are destaged, the data 

could be written in the flash cache block by the admission 

policy.  
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Figure 3.1. Flash cache architecture 

 

3. Corresponding blocks are allocated depending on the type of 

data which is either write-frequent data (WFD) or 

read-frequent data (RFD),  

4. The flash controller allocates pages in the block upon the size 

of the request.  

5. The flash controller notifies the cache controller of full in 

NAND flash device, and then cache eviction policy chooses 

the victim blocks. 

6. The cache controller performs efficient eviction with the 

write buffer if the victim block is read-frequent data block 

(RFDB), and then erases the victim blocks. 
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The admission policy 

Input:  node pointer of each LBA in write buffer 

If node-> write_count > Threshold_write && node -> read_count == 0 then 

invlalid_data(lba); 

else if node->read_count > Threshold_read || node->write_count < Threshold_write then 

ppa=allocate_RFDB(); 

else 

ppa=allocate_WFDB(); 

end 

flash_write(ppa, node->data, node->lba); 

Figure 3.2. The admission policy 

 

 

3.1  Admission Policy with read/write count in the Write Buffer 

 

The cache admission policy admits data except that of frequent writes. In 

order to identify data of high potential writes, the flash cache records 

read/write count of each LBA in write buffer. The flash cache manages a 

list stored read/write count of each LBA in the write buffer. The list gets 

updated when the read/write request corresponding with the LBA are 

submitted. When the LBA are destaged on the write buffer, the admission 

policy admits the data of the LBA by checking the list. In addition, the least 

recently written (LRW) policy in write buffer is applied to retain WFD for a 

long time. Figure 3.2 shows the detailed admission policy. First of all, if the 

read count of the LBA is zero and the write count of the LBA is larger than 

the fixed value, the data of LBA does not write to flash cache block. Next, 

the admission policy classifies the LBA that could be written in flash cache 
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block into two types. The LBA is classified as RFD if the read count of the 

LBA is larger than the fixed value, or the write count of LBA is smaller 

than the fixed value. Lastly, the remaining data is considered as the WFD 

and the admission policy allocates write-frequent data block (WFDB). 

 

 

3.2  Eviction Policy 

 

The eviction policy performs eviction in different ways depending on type 

of blocks. The flash cache blocks are manages by splitting them into RFDBs 

and WFDBs. In Figure 3.3, evictions of two block type is described and two 

type of eviction is different. In order to retain data of high potential read, 

the eviction policy evicts WFDB first. In WFDB, the eviction policy selects 

the victim block with the largest number of invalid pages like silent 

eviction and then the victim block is erased without copying the valid page. 

When the eviction policy continuously evicts only WFDB blocks, there 

would not be any WFDBs and then only RFDBs remain. For this reason, 

the eviction policy maintains the number of WFDB that represents 10% of 

the whole block in the flash cache. Accordingly, the eviction policy performs 

eviction in RFDB if necessary. The efficient eviction chooses the victim 

block with the largest number of invalid pages in RFDBs. As shown in 3.3, 

valid pages contained in the victim block are written again in the write 

buffer and then, the victim block gets erased. After some time, the 

admission policy classifies the uploaded data into unpermitted data, or 

RFD or, WFD.   
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Figure 3.3. Method of eviction in WFDB and RFDB 

 

3.3  Flash memory block management 

 

The admission policy classifies destaging data into two types and notifies 

flash controller of the type of data, RFD and WFD. Figure 3.4 shows that 

the proposed method divides the flash memory block into two type of blocks, 

read-frequent and write-frequent data blocks. In RFDB, the flash controller 

uses hybrid mapping method with log block, and it is similar to the method 

of FAST. The flash controller uses log blocks for out-of-place update and 

performs log block merge in RFDB when the number of log block reaches 

up to its limit. On the other hand, the flash controller employs page-level 

mapping without log block in WFDB. The flash controller just retains lots 

of write-frequent data temporarily to prevent cache miss. Thus, there are 

no log block merge operations because of low importance. If the write 

request corresponding with the LBA that stored in WFDB are submitted, it 

would be written in the write buffer and flash controller would mark the 

page that are stored the data in WFDB as invalid.   
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Figure 3.4. Management in flash memory block 

 

 

3.4  Page level caching 

 

Page level caching is applied to the proposed method. Figure 3.5 and 3.6 

show block level caching and page level caching in server system. As shown 

in Figure 3.5, flash cache allocates space by the block. In contrary to block 

level caching, it can allocate flash memory space in request size unit. Page 

level caching can handle a lot of cached data.  

In addition, page level caching is different from page level mapping. In 

other words, unit of caching method would be page if mapping method is 

block mapping. In this thesis, mapping table uses hah map. If write buffer  
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Figure 3.5. Block level caching 
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Figure 3.6. Page level caching 

 

is full, flash cache destages data in write buffer and allocates a appreciate 

space and then each combination of physical block address and offset is 

independently mapped with combination of local block address and offset. 

Accordingly, mapping method of RFDB can be hybrid mapping. 
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Chapter 4 

 

Experimental Results 

 

4.1  Simulation Environments 

 

The proposed method is evaluated by the simulator that is based on the 

solid state cache (SSC) simulator in FlashSim [11]. The simulator composes 

of a write buffer, a cache controller, and a flash controller. This simulator 

includes write buffer management schemes, admission policies, and 

eviction policies. An SSC simulator was emulated with the parameters [14] 

in Table 4.1. 

 

4.1.1  Trace of TPC-C benchmark 

 

TPC-C benchmark was installed on a Linux server. An 8 GB database of 

TPC-C benchmark was generated through Mysql, which uses InnoDB as a 

storage engine and default page size is 16 KB. An I/O trace of the TPC-C 

benchmark was extracted in four hours run with the configuration.  
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Table 4.1. Emulation parameter 

Page read 65 Control delay 10 

Page write 85 Page size 4096 bytes 

Block erase 1000 Page / erase block 64 

Seq. Read 585 MB/sec Rand. Read 149,700 IOPS 

Seq. Write 124 MB/sec Rand. Write 15,300 IOPS 

 

In addition, an I/O trace of the TPC-C benchmark was extracted by 

compressing the page size to 8 KB since most of read request size in the 

TPC-C benchmark is 8 KB.      

 

4.1.2  Cache Controller and Flash Controller in simulator 

 

This program simulates the behavior of cache controller depending on the 

write buffer scheme, the cache mode, the admission policy, and the eviction 

policy. The cache controller in the simulator mainly operates two functions. 

Firstly, it manages cached data with mapping table in memory. Secondly, it 

determines which data gets admitted or evicted. Moreover, the cache 

controller provides only a write-through policy. For that reason, dirty page 

information is not stored; it only writes the data. For comparison purpose, 

the simulator supports least recently used (LRU) policy of write buffer, 

various cache method, and eviction. 

The flash controller simulates a NAND flash device that is similar to a 

SSD. It consists of a FTL, GC, and other capabilities to manage flash device. 

In order to reduce response time, the flash controller stores the maps of 



１９ 

valid, invalid, and erase counts in memory. In addition, the flash controller 

supports various GC method and mapping method. The flash controller 

reserves 10% of total capacity for the overprovisioned blocks and maintains 

7% of their capacity for log blocks.    

 

4.1.3  Memory Consumption 

 

The flash cache stores the mapping table from the LBA to the physical 

address of the flash cache using a hash map. The hash map is similar to 

that of FlashTier; however, the values of key and physical address are 

different. The hash map has a higher speed and lower space overhead than 

the hash table of flashcache [12]. The flash cache commercially maintains 

the whole mapping table in its own memory (DRAM). The proposed system 

consumes approximately 8 bytes per key of cached page. Thus, it requires 

more memory than the method of block-level mapping. 

In this simulation, the 4 GB flash cache required 1,048,576 entries. 

Because the size of each entry is 8 bytes, the total mapping table requires 

7.5 MB. If the flash cache size is 512 GB, it would require 960 MB. The 

address map of native method [2] is implemented using an array of 4 byte 

entries. This results in a 768 MB address map in 512 GB cache device. A 

tradeoff exists between the hit rate and memory consumption in enterprise 

systems. Additionally, the proposed system manages the list of data stored 

in the write buffer. This list requires 16 KB when the write buffer size is 8 

MB because the write buffer has 2,048 entries and each entry requires 8 

bytes.  
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4.2  Simulation Analysis 

 

The merits and overheads of the proposed method are compared to 

FlashTier bearing three key questions in mind;  

1) How well does the proposed method retain read-frequent data? 

2) How accurately does the proposed method evict unnecessary data? 

3) To what extent does the proposed method reduce GC count?  

 

To verify the effectiveness of the proposed method, trace-driven simulations 

were conducted. In this experiments, each flash cache block consists of 64 

pages by default and the write buffer size ranges from 8M to 16M bytes. 

Simulation were conducted on the TPC-C benchmark suit in the following 

four cases. 

 

1) write buffer size – 8 MB, database page size of workload – 16 KB 

2) write buffer size – 16 MB, database page size of workload – 16 KB 

3) write buffer size – 8 MB, database page size of workload – 8 KB 

4) write buffer size – 16 MB, database page size of workload – 8 KB 
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The simulation results of flash cache on TPC-benchmark (16 KB and 8 

KB) for FlashTier and the proposed method are in Table 5.1 and 5.2. The 

hit rate, GC count, CLWA, FLWA, total write amplification factor (TWAF), 

and normalized average response time are contained in Table 5.1 and Table 

5.2. 

The simulation results of hit rate in both FlashTier and the proposed 

method are illustrated in Figure 5.1. The hit rate of the proposed method 

outperforms FlashTier by up to 10%. The proposed method achieves high 

hit rate (up to 90%) in simulation results with the trace of compressed page 

size. Moreover, the hit rate of the proposed method increases up to 96% in 

the case of the 16 MB write buffer. The proposed method achieves low 

TWAFs in all of cases. In 16 KB size of trace, the proposed method reduces 

TWAF from 33.24 to 27.88. In addition, TWAF decreased from 15.65 to 

11.83 in 8 KB size of traces. Moreover, CLWA and FLWA were compared. 

The proposed method significantly reduces CLWA. On the other hands, 

FLWA of the proposed method larger than that of FlahTier. The proposed 

method decreases GC count. In 16 KB traces, GC count of the proposed 

method is reduced by up to 51%. Additionally, GC count of the proposed 

method is reduced by 40% in trace with compressed page size. Comparison 

results of normalized average response time in both FlashTier and the 

proposed method are described in Figure 5.2. The normalized average 

response time of the proposed method is improved from 0.9 to 0.76 in 

Figure 5.2(a). 
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Table 5.1. Simulation results of TPC-C benchmark (16 KB) 

Flash 

Cache 

Write 

Buffer Size 

Hit rate GC 

count 

CLWA FLWA TWAF Normalized average 

response time 

FlashTier 0 MB 85.0 % 199,975 35.00 13.33 48.34 1.0 

8 MB 84.7 % 89,225 28.91 5.42 34.34 0.904 

16 MB 84.93 % 87,750 28.53 4.70 33.24 0.896 

Proposed 

Method 

8 MB 94.6 % 42,587 25.46 2.55 28.01 0.765 

16 MB 94.58 % 42,125 25.34 2.53 27.88 0.764 

 

 

Table 5.2. Simulation results of TPC-C benchmark (8 KB) 

Flash 

Cache 

Write 

Buffer Size 

Hit rate GC 

count 

CLWA FLWA TWAF Normalized average 

response time 

FlashTier 0 MB 81.10% 316,888 4.94 24.34 29.29 1.0 

8 MB 85.79% 113,240 15.65 0.0003 15.65 0.84 

16 MB 85.69% 116,833 15.76 0.0003 15.76 0.84 

Proposed 

Method 

8 MB 91.25% 77,677 2.16 9.67 11.83 0.80 

16 MB 96.27% 70,725 2.16 10.55 12.72 0.77 
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(a) TPC-C (16KB) (b) TPC-C (8KB)

 Figure 5.1. Hit rate 

  

 

(a) TPC-C (16KB) (b) TPC-C (8KB)

 Figure 5.2. Normalized average response time 
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There are two major reasons for the improvement. Firstly, benefits of the 

proposed method come from identifying the read-frequent data. And then, 

the proposed method manages flash cache by classifying block into WFDB 

and RFDB. Thus, retaining data that are allocated in RFDB reduces cache 

misses. Accordingly, hit rate increases and a substantial amount of writes 

decreases. Secondly, the proposed method allocates space in accordance 

with request size. Therefore, write amplification factor and GC count 

decrease by utilizing the overall flash cache block. On the other hands, 

FlashTier uses block-level caching and evicts the cached data too early, as 

shown in the FLWA of FlashTier. The overhead of the proposed method 

includes the computation time of the admission policy and recording 

read/write count of write buffer. However, they are negligible.
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Chapter 5 

 

Conclusions 

 

Existing flash caches are widely employed in enterprise server system for 

achieving high I/O performance. However, traditional flash caches incur 

performance degradation due to small-sized read/write requests. A new 

method of flash cache management improves overall performance 

especially in write-intensive OLTP server. 

The key insight is that flash cache has some flexibility in terms of how it 

manages data. Contrary to conventional usage as storage, it does not 

require to preserve the data of frequent write. Thus, the proposed method 

classifies incoming data by using the read/write count during the write 

buffer, and it then writes on affordable space in flash cache block. 

In this thesis, SSC simulator was implemented to validate the proposed 

method and it performed simulations several times. The experimental 

results showed a comparison of FlashTier and the proposed method. The 

proposed method improves the hit rate by 10% for flash cache. In addition, 

it obtains half of the GC count and reduces a substantial amount of writing 

on flash memory block. Lastly, it reduces normalized average response time 

from 0.9 to 0.76. 
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