

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

온라인 트랜젝션 프로세싱 서버에서의

효율적인 플래시캐쉬 관리 방법

Efficient Flash Cache Management

in Online Transaction Processing Server

2015 년

서강대학교 대학원

컴퓨터공학과

김 진 표

온라인 트랜젝션 프로세싱 서버에서의

효율적인 플래시캐쉬 관리 방법

Efficient Flash Cache Management

in Online Transaction Processing Server

지도교수 김 주 호

이 논문을 공학석사 학위논문으로 제출함

2015 년 12 월

서강대학교 대학원

컴퓨터공학과

김 진 표

논 문 인 준 서

김진표의 공학석사 학위논문을 인준함.

2015 년 12 월

주심 임 종 석 (인)

부심 김 주 호 (인)

부심 이 혁 준 (인)

I

감사의 글

지난 2년간의 대학원 생활은 저에게 다양한 경험을 할 수 있는

시간이었고, 그로 인해서 제가 많이 성장할 수 있었습니다. 먼저 연구를

지도해주시고 논문을 쓰는 과정에 많이 신경 써주시고 졸업 이후의 삶의

방향도 제시해 주신 김주호 지도 교수님께 진심으로 감사 드립니다. 또한

제가 학부과정과 석사과정으로 학교를 다니는 동안 큰 가르침을 주시고,

바쁘신 와중에도 저의 논문을 심사해 주신 임종석 교수님과 이혁준

교수님께 감사 드립니다. 그리고 연구실에 적응할 수 있도록 많이

신경써주시고, 저를 늘 좋게 봐주신 덕근이형, 정원이형, 명우형에게

감사드립니다. 또한 연구실 동기로 함께 2년간 함께 생활하며, 같이 웃고,

또 힘든 시간들을 버틸 수 있게 도와준 성일이, 혜민이, 선화에게도

고맙다는 말을 전하고 싶습니다. 또한 제가 논문 쓰는 동안 연구실 일들을

잘 감당해준 무준이형, 민균이, 싸드에게도 감사를 전합니다.

 마지막으로 항상 저를 위해 기도해주시고, 격려와 지지를 보내주신

사랑하는 부모님과 동생 그리고 한나에게 깊은 감사의 말을 전합니다.

2015 년 12 월

김 진 표 올림

II

Table of Contents

Abstract

Chapter 1

Introduction 1

Chapter 2

Background and Motivation 5

2.1 Host-side Flash Cache ·· 5

2.2 Access Pattern in the TPC Benchmark ··· 6

2.3 FTL and Write amplification ·· 7

2.4 Motivation ··· 8

Chapter 3

Flash Cache Management in OLTP Server 10

3.1 Admission Policy with read/write Count in the Write Buffer ······································ 12

3.2 Eviction Policy ··· 13

3.3 Flash memory block management ·· 14

3.4 Page level caching ··· 15

Chapter 4

Experimental Results 17

4.1 Simulation Environments ·· 17

4.1.1 Trace of TPC benchmark ··· 17

4.1.2 Cache Controller and Flash Controller in simulator ·· 18

4.1.3 Memory Consumption ·· 19

4.2 Simulation Analysis ··· 20

Chapter 5

Conclusions 25

REFERENCE 26

III

List of Figures

1.1 I/O performance impact of hit rate ··· 2

3.1 Flash cache architecture ··· 11

3.2 The admission policy ··· 12

3.3 Method of eviction in WFDB and RFDB ································· 14

3.4 Management in flash memory block ······································· 15

3.5 Block level caching ··· 16

3.6 Page level caching ·· 16

5.1 Hit rate ·· 23

5.2 Normalized average response time ··· 23

IV

List of Tables

2.1 TPC-C Benchmark ··· 7

4.1 Emulation parameter ··· 18

5.1 Simulation results of TPC-C benchmark (16 KB) ························· 22

5.2 Simulation results of TPC-C benchmark (8 KB) ·························· 22

V

초 록

호스트사이드 플래시 캐시는 하이엔드 엔터프라이즈 서버

시스템에서 높은 I/O 성능과 낮은 지연을 위하여 컴퓨터 구조에

나타난 새로운 계층이다. 플래시 메모리가 저장장치로 쓰이는

기존의 방법과 달리, 플래시 메모리가 캐시로서 사용되는 데 몇

가지 방법이 사용된다. 그러나, 쓰기가 집중적인 온라인 트랜잭션

프로세싱 (OLTP) 서버에서 기존의 플래시 캐시 시스템은 낮은

성능을 보인다. 따라서, 이 논문에서는 플래시 캐시에 쓰기 버퍼의

관리에 초점을 두었다. 솔리드 스테이트 캐시 (SSC) 기반의

효율적인 플래시 캐시 관리 시스템을 제안한다. 제안된 시스템은

쓰기 버퍼에서의 접근 횟수를 사용하는 캐시 입장 정책을 활용하고,

이에 따라 적절한 유형의 플래시 메모리 블락을 할당한다. 이렇게

함으로써, 쓸모 있는 데이터가 캐시내에 유지되고, 플래시 메모리에

불필요한 쓰기가 감소한다. 제안한 방법을 검증하기 위해, 리눅스

서버에 TPC-C 벤치 마크 [13] 를 설치했고, I/O 트레이스들을

추출했다. 또한 시뮬레이터를 구현하여 시뮬레이션을 수행했다.

FlashTier [3]와 비교한 실험 결과는 제안한 방법이 hit 비율을

10%이상 향상시키고, 일반화된 평균 응답시간을 0.9에서 0.76만큼

감소시켰다.

키워드 – 쓰기 버퍼, 솔리드 스테이트 캐시 (SSC), 플래시 캐시

VI

ABSTRACT

Host-side flash cache is a new tier in computer architecture that can archive

high I/O performance and low latency in enterprise server systems. In contrast

to conventional methods that use flash memory for storage, some approaches

employ flash memory as cache. However, existing flash cache systems show

low hit rate and high latency in the write-intensive online transaction

processing (OLTP) server. The main idea of this thesis is on the utilization of

the write buffer in the flash cache. In this thesis, an efficient flash cache

management system based on solid state cache (SSC) is proposed. The

proposed system utilizes an admission policy that employs the access count in

the write buffer and allocates the appropriate type of block in flash memory. It

is thereby possible to retain valuable data and reduce unnecessary writing in

flash memory. To validate the proposed system, TPC-C benchmark [13] was

installed on a Linux server and the I/O traces were extracted. In addition, SSC

simulator was implemented and simulation was performed on it. Experimental

results show that the proposed system improves the hit rate by up to 10% and

reduces the normalized average response time from 0.9 to 0.76 compared with

FlashTier [3].

Keywords – write buffer, Solid state cache (SSC), Flash cache

１

Chapter 1

Introduction

Flash cache is primarily used in networked storage environments. In fact,

a new tier has emerged between the main memory (DRAM) and storage

area network (SAN). Flash memory has faster I/O performance than

magnetic disk (HDD) and it costs less than main memory (DRAM). Flash

cache is used in hyper computing servers, cloud servers, and data centers

that are commercially used in Facebook and Google. Naturally, there exist

various access patterns of workloads depending on the usage environment.

In the online transaction processing (OLTP) server, the ratio of small size

random write requests is greater than the ratio in other servers.

Accordingly, flash cache is added to improve the endurance and hit rate by

effectively managing small-size write requests in the OLTP Server. Figure

1.1 shows that relation between hit rate of flash cache and I/O performance

of system with networked storage. Koller et al. [1] mentioned that cache

miss degrades throughput of flash device. Solid state drive (SSD) has

similar architecture to the flash cache and it is used as a fast storage

device.

２

0
0.2 0.4 0.6 0.8 1

hit rate

I/O
 p

er seco
n

d
s

4k

8k

12k

16k

0

300 us
1ms
2ms

Network storage latency

20k

Figure 1.1. I/O performance impact of hit rate

Flash memory has two key characteristics. Firstly, it is characterized as

‘erase-before-write’ memory; i.e., it cannot overwrite without erasing the

block containing the page. This feature of flash memory has recently drawn

many researchers’ attention on the out-of-place update and garbage

collection (GC). Secondly, the flash memory cell has a limited number of

erase counts. The maximum number of erases per block is 100,000 in

single-level cell (SLC). It is even less in multi-level cell (MLC) (≤ 10,000)

and in three-level cell (TLC) (≤ 3,000). In order to extend the lifespan of

flash memory, many techniques have been developed and the wear-leveling

is commonly accepted method among them.

Using flash memory as a cache has different behaviors that distinguish

this application them from its conventional usage as storage. First, data in

the cache may present elsewhere in the system. Thus, it has some

３

flexibility in terms of how it manages data. Second, a cache requires

consistency. A cache must ensure that it never returns stale data; however,

it can also return nothing if no data is present. Thus, writing data of logical

block address (LBA) that have a few read requests and many write

requests wastes space because the data have already been written

somewhere. On the other hands, there are also LBAs that have a high

potential of being read. This results in a lack of space for the latter data, as

well as the generation of more unnecessary invalid pages by submitting

continual write requests and invoking frequent garbage collection.

In recent years, there has been tremendous interest in exploring the flash

cache system. Mercury [2] proposed host-side flash caching that provides a

cache for various virtual machines over networked storage protocols. Their

approach focuses on flash caching in a virtualized, shared storage data

center. FlashTier [3] is a flash cache layer based on block-level caching. It

uses a custom flash translation layer (FTL) that is optimized for caching. In

particular, FlashTier decreases the amount of writing by replacing the

native garbage collection with silent eviction. Additionally, HEC [4]

adopted flash-layer write amplification (FLWA) and cache-layer write

amplification (CLWA) as measurement units and experiments for

endurance improvement. HEC strived to reduce the write amplification

results from GC, cache admission policies, and the cache eviction policies.

The above methods provide block-level caching. In fact, they manage

coarse-grained cached data. Block-level caching can write in block units

when a cache miss occurs. It means that only one cache miss can load a

whole block of many data that may not be used later. If only one page of a

４

block has a read request, and the other pages have no requests, the spaces

occupied by the pages with no requests will be wasted. Consequently, it

leads into a lack of space and calls garbage collection. Therefore, a new

approach that manages fine-grained data in a page-level caching is

proposed. Since most request size of write-intensive OLTP server

workloads (TPC-C) [13] is 8KB, the proposed method writes in the size of

corresponding request units. Furthermore, the proposed method is efficient

in terms of space utilization in flash memory block.

In this thesis, an efficient write buffer management using the flash cache

was proposed. In addition, a method of managing block in flash cache to

retain data that have a high potential of reading was presented. In short,

the main contributions of this thesis are outlined below.

- The write buffer was used for analyzing read/write counts for the LBA

and mitigate pressure due to repetitive write requests in the

workload.

- The proposed method manages flash memory by classifying blocks

into two types for effective eviction. In this method, data that have a

high possibility of reading are preserved in the flash cache.

- The proposed method utilizes capacity for retaining more data by

page-level caching. As a result, it produces efficient garbage collection

and improvement in high hit rates.

The remainder of this thesis is organized as follows. Chapter 2 describes

the background and motivation of this research. Chapter 3 describes the

proposed method. Chapter 4 describes experimental results. Finally,

chapter 5 presents conclusions.

５

Chapter 2

Background

2.1 Host-side Flash Cache

Host-side flash cache resides in layers between SAN and DRAM.

Deployment of host-side flash cache can improve I/O performance in

enterprise server. In fact, flash cache fills the gap between HDD and

DRAM with high I/O performance and low cost. In typical enterprise

systems, the host server employs solid state drive (SSD) directly attached

to cache data at the SAN backend. In other words, host-side flash cache

removes confusion in the SAN backend and produces overall performance

improvement by removing network latency. Inherent differences exist

between the flash-based cache and DRAM-based cache. Firstly, the flash

caches is located underneath the DRAM in the storage hierarchy. Therefore,

it stores data that are less referenced. Secondly, flash cache is used instead

of DRAM as the caching media. Although flash cache has a finite number of

program/erase (P/E) cycles, DRAM-based cache does not have the same

write cycle limitation. Thus, the write cycle limitation is relevant to the

device lifetime.

６

The proposed method of flash cache has two main advantages. Because

SAN requires immense access latency, data are returned when possible in

flash cache or DRAM for obtaining high I/O performance of the application.

Thus, the first advantage comes from high hit rate by retaining data that

have a high potential of read in near future. The second advantage comes

from reducing garbage collection that affects I/O performance. In general,

flash cache predominantly runs at full capacity to achieve high hit rate.

Naturally, it requires garbage collection for reallocating space; moreover,

write amplification increases on account of valid page copy during garbage

collection. Furthermore, the garbage collection overhead further degrades

I/O performance as more valid page copying occurs. Therefore, the proposed

method considers retaining data that have a high potential of read and

reducing garbage collection.

2.2 Access Patterns in the TPC-C Benchmark

The TPC-C benchmark is the OLTP benchmark. It is more complex than

the conventional OLTP benchmark because it is comprised of multiple

transactions and more complex database. Its database consists of nine table

types. TPC-C benchmark simulates a complete computing environment in

which a group of users executes transactions against the database

simultaneously. The workload involves a combination of five concurrent

transactions of different types. This workload contains a large number of

read/write requests and it calls small-size I/O operations (8 KB) that

randomly access the data spread over a wide portion of the disk.

７

Table 2.1. TPC-C Benchmark

Size Read Write Both types

8KB 65.70% 32.66% 98.36%

16KB 0.00% 1.49% 1.49%

Other sizes 0.00% 0.15% 0.15%

All sizes 65.71% 34.29% 100.00%

The ratio of read and write at various request size is described in Table 2.1.

As shown in Table 2.1, the ratio between the read and write requests of the

workload-extracted TPC-C benchmark is 1.9:1. As shown in Table 2.1,

TPC-C benchmark has a property of having more number of small size

write access than others.

2.3 FTL and Write Amplification

Over several decades, considerable research on FTL has been conducted

for obtaining high performance. For hybrid mapping, various FTLs exist,

such as FAST [5], BAST [6], SAST [7], and LAST [8]. For page-level

mapping, DFTL [9] was proposed to cache the frequently used mapping

table in the on-disk SRAM as a means of improving the address translation

performance. In addition, μ-FTL [10] adopted the μ-tree on the mapping

table to reduce the memory footprint.

FTL performs out-of-place updates, thereby it leaves invalid pages. When

SSD has no free block, FTL operates garbage collection for setting aside

free spaces. In normal operation, the garbage collection erases the blocks

only after valid pages in the blocks are copied to another blocks. This

８

results in additional writes because the block of valid pages is copied.

In HEC, CLWA and FLWA are proposed measure of write amplification

in the flash cache. First, CLWA is computed as the ratio between the

cache-generated writes and the original workload writes. In other words, it

measures the amount of write amplification on cache misses. CLWA can be

significantly reduced by cache admission policies. Second, FLWA is the

ratio between the GC-generated writes and the original workload writes. It

can be affected by access pattern of workloads and GC policies.

2.4 Motivation

Recently, flash memory is often used as cache between main memory and

storage. The flash cache can reduce tremendous amount of storage access

with proper memory management. However, the native flash cache in

write-intensive OLTP server may suffer from significant performance

losses. Existing methods adopt an admission policy such as touch count and

selective sequential rejection (SSEQR). Touch count is not effective in

OLTP server because it allocates space for data only after a cache miss

occurs several times. SSEQR does not admit a long sequential request. It

can lead to an immense number of cache misses because unpermitted

large-size request may contain hot data.

The existing methods utilize the access count or size of request for cache

admission policy. However, those methods are inappropriate to determine

which data is copied into the flash cache especially with write-intensive

workload. The data that have a high potential of write and few potential of

９

read should not occupy the flash cache space. Even though these data

occupy flash cache, this method provides no benefits in system. Rather than

generating more invalid page, more garbage collection is required. In

write-through policy, the present of data in flash cache does not affect the

total time from write request to the completion because of writes in

networked storage. Thus, the admission policy of the proposed method does

not admit data that have a high write count in write buffer.

Garbage collection is another factor of serious performance loss in the

flash cache. When capacity of the flash cache is full, it must clean invalid

pages and erase the block or destage some blocks to set aside space through

garbage collection. One of the commercially available FTL is the FAST [5]

and it performs garbage collection with the sequential and random write

log blocks. FlashTier proposed the silent eviction replacing garbage

collection. Silent eviction selects the victim block with the least number of

valid pages and then the chosen victim block is erased without copying the

valid pages in the victim block. Accordingly, the method can reduce the

time of setting aside free space. Nevertheless, the silent eviction causes

frequent cache miss because it does not preserving valid pages that might

be read soon. Naturally, increasing the cache miss results in increasing

access on SAN. This causes declining IOPS (input/output operations per

second) and significantly high response time. It motivated this thesis

towards applying proper modification to the exiting silent eviction method.

１０

Chapter 3

Flash cache management in OLTP server

A new flash cache management is described in this chapter. Figure 3.1

shows enterprise server system with the proposed flash cache. In Figure

3.1, the flash cache is located between main memory and networked

storage in server system architecture. A flash cache system includes write

buffer, cache controller, flash controller, and NAND flash device. The cache

controller controls the cached data with admission and eviction policies.

The flash controller not only manages NAND flash device but also performs

GC algorithm. The operating system directly maps the flash cache page,

and writes to the flash cache using the logical block address and offset. The

flash cache internally maps those addresses to physical locations. The

following six steps describes the life cycle of data in the proposed flash

cache.

1. Write buffer gets allocated only if the read/write request

trigger cache misses.

2. When the data in the write buffer are destaged, the data

could be written in the flash cache block by the admission

policy.

１１

Processor

Processor L1, L2 Cache

Main Memory (DRAM)

Storage Area Network (HDD)

Flash Cache

Flash Cache

Write Buffer

Cache

Controller

Flash Translation Layer

NAND Flash

Flash

Controller

Cache

Admission

Policy

Cache

Eviction

Policy

I/O Requests (read, write)

Figure 3.1. Flash cache architecture

3. Corresponding blocks are allocated depending on the type of

data which is either write-frequent data (WFD) or

read-frequent data (RFD),

4. The flash controller allocates pages in the block upon the size

of the request.

5. The flash controller notifies the cache controller of full in

NAND flash device, and then cache eviction policy chooses

the victim blocks.

6. The cache controller performs efficient eviction with the

write buffer if the victim block is read-frequent data block

(RFDB), and then erases the victim blocks.

１２

The admission policy

Input: node pointer of each LBA in write buffer

If node-> write_count > Threshold_write && node -> read_count == 0 then

invlalid_data(lba);

else if node->read_count > Threshold_read || node->write_count < Threshold_write then

ppa=allocate_RFDB();

else

ppa=allocate_WFDB();

end

flash_write(ppa, node->data, node->lba);

Figure 3.2. The admission policy

3.1 Admission Policy with read/write count in the Write Buffer

The cache admission policy admits data except that of frequent writes. In

order to identify data of high potential writes, the flash cache records

read/write count of each LBA in write buffer. The flash cache manages a

list stored read/write count of each LBA in the write buffer. The list gets

updated when the read/write request corresponding with the LBA are

submitted. When the LBA are destaged on the write buffer, the admission

policy admits the data of the LBA by checking the list. In addition, the least

recently written (LRW) policy in write buffer is applied to retain WFD for a

long time. Figure 3.2 shows the detailed admission policy. First of all, if the

read count of the LBA is zero and the write count of the LBA is larger than

the fixed value, the data of LBA does not write to flash cache block. Next,

the admission policy classifies the LBA that could be written in flash cache

１３

block into two types. The LBA is classified as RFD if the read count of the

LBA is larger than the fixed value, or the write count of LBA is smaller

than the fixed value. Lastly, the remaining data is considered as the WFD

and the admission policy allocates write-frequent data block (WFDB).

3.2 Eviction Policy

The eviction policy performs eviction in different ways depending on type

of blocks. The flash cache blocks are manages by splitting them into RFDBs

and WFDBs. In Figure 3.3, evictions of two block type is described and two

type of eviction is different. In order to retain data of high potential read,

the eviction policy evicts WFDB first. In WFDB, the eviction policy selects

the victim block with the largest number of invalid pages like silent

eviction and then the victim block is erased without copying the valid page.

When the eviction policy continuously evicts only WFDB blocks, there

would not be any WFDBs and then only RFDBs remain. For this reason,

the eviction policy maintains the number of WFDB that represents 10% of

the whole block in the flash cache. Accordingly, the eviction policy performs

eviction in RFDB if necessary. The efficient eviction chooses the victim

block with the largest number of invalid pages in RFDBs. As shown in 3.3,

valid pages contained in the victim block are written again in the write

buffer and then, the victim block gets erased. After some time, the

admission policy classifies the uploaded data into unpermitted data, or

RFD or, WFD.

１４

WFDB

Victim block

I V I V

Free block

Erase

RFDB

Victim block

I V I V

Free block

Erase

Write buffer

upload
V – valid page

I – invalid page

Figure 3.3. Method of eviction in WFDB and RFDB

3.3 Flash memory block management

The admission policy classifies destaging data into two types and notifies

flash controller of the type of data, RFD and WFD. Figure 3.4 shows that

the proposed method divides the flash memory block into two type of blocks,

read-frequent and write-frequent data blocks. In RFDB, the flash controller

uses hybrid mapping method with log block, and it is similar to the method

of FAST. The flash controller uses log blocks for out-of-place update and

performs log block merge in RFDB when the number of log block reaches

up to its limit. On the other hand, the flash controller employs page-level

mapping without log block in WFDB. The flash controller just retains lots

of write-frequent data temporarily to prevent cache miss. Thus, there are

no log block merge operations because of low importance. If the write

request corresponding with the LBA that stored in WFDB are submitted, it

would be written in the write buffer and flash controller would mark the

page that are stored the data in WFDB as invalid.

１５

Write buffer

RFDB

(read-frequent data block)

WFDB

(write-

frequent

data block)

NAND Flash

Destage

Over

provision

Log

block

Read-frequent data

Write-frequent Data

Write-only Data

10%

Figure 3.4. Management in flash memory block

3.4 Page level caching

Page level caching is applied to the proposed method. Figure 3.5 and 3.6

show block level caching and page level caching in server system. As shown

in Figure 3.5, flash cache allocates space by the block. In contrary to block

level caching, it can allocate flash memory space in request size unit. Page

level caching can handle a lot of cached data.

In addition, page level caching is different from page level mapping. In

other words, unit of caching method would be page if mapping method is

block mapping. In this thesis, mapping table uses hah map. If write buffer

１６

Flash cache

SAN (HDD)

Main memory

(DRAM)

Figure 3.5. Block level caching

Flash cache

SAN (HDD)

Main memory

(DRAM)

Figure 3.6. Page level caching

is full, flash cache destages data in write buffer and allocates a appreciate

space and then each combination of physical block address and offset is

independently mapped with combination of local block address and offset.

Accordingly, mapping method of RFDB can be hybrid mapping.

１７

Chapter 4

Experimental Results

4.1 Simulation Environments

The proposed method is evaluated by the simulator that is based on the

solid state cache (SSC) simulator in FlashSim [11]. The simulator composes

of a write buffer, a cache controller, and a flash controller. This simulator

includes write buffer management schemes, admission policies, and

eviction policies. An SSC simulator was emulated with the parameters [14]

in Table 4.1.

4.1.1 Trace of TPC-C benchmark

TPC-C benchmark was installed on a Linux server. An 8 GB database of

TPC-C benchmark was generated through Mysql, which uses InnoDB as a

storage engine and default page size is 16 KB. An I/O trace of the TPC-C

benchmark was extracted in four hours run with the configuration.

１８

Table 4.1. Emulation parameter

Page read 65 Control delay 10

Page write 85 Page size 4096 bytes

Block erase 1000 Page / erase block 64

Seq. Read 585 MB/sec Rand. Read 149,700 IOPS

Seq. Write 124 MB/sec Rand. Write 15,300 IOPS

In addition, an I/O trace of the TPC-C benchmark was extracted by

compressing the page size to 8 KB since most of read request size in the

TPC-C benchmark is 8 KB.

4.1.2 Cache Controller and Flash Controller in simulator

This program simulates the behavior of cache controller depending on the

write buffer scheme, the cache mode, the admission policy, and the eviction

policy. The cache controller in the simulator mainly operates two functions.

Firstly, it manages cached data with mapping table in memory. Secondly, it

determines which data gets admitted or evicted. Moreover, the cache

controller provides only a write-through policy. For that reason, dirty page

information is not stored; it only writes the data. For comparison purpose,

the simulator supports least recently used (LRU) policy of write buffer,

various cache method, and eviction.

The flash controller simulates a NAND flash device that is similar to a

SSD. It consists of a FTL, GC, and other capabilities to manage flash device.

In order to reduce response time, the flash controller stores the maps of

１９

valid, invalid, and erase counts in memory. In addition, the flash controller

supports various GC method and mapping method. The flash controller

reserves 10% of total capacity for the overprovisioned blocks and maintains

7% of their capacity for log blocks.

4.1.3 Memory Consumption

The flash cache stores the mapping table from the LBA to the physical

address of the flash cache using a hash map. The hash map is similar to

that of FlashTier; however, the values of key and physical address are

different. The hash map has a higher speed and lower space overhead than

the hash table of flashcache [12]. The flash cache commercially maintains

the whole mapping table in its own memory (DRAM). The proposed system

consumes approximately 8 bytes per key of cached page. Thus, it requires

more memory than the method of block-level mapping.

In this simulation, the 4 GB flash cache required 1,048,576 entries.

Because the size of each entry is 8 bytes, the total mapping table requires

7.5 MB. If the flash cache size is 512 GB, it would require 960 MB. The

address map of native method [2] is implemented using an array of 4 byte

entries. This results in a 768 MB address map in 512 GB cache device. A

tradeoff exists between the hit rate and memory consumption in enterprise

systems. Additionally, the proposed system manages the list of data stored

in the write buffer. This list requires 16 KB when the write buffer size is 8

MB because the write buffer has 2,048 entries and each entry requires 8

bytes.

２０

4.2 Simulation Analysis

The merits and overheads of the proposed method are compared to

FlashTier bearing three key questions in mind;

1) How well does the proposed method retain read-frequent data?

2) How accurately does the proposed method evict unnecessary data?

3) To what extent does the proposed method reduce GC count?

To verify the effectiveness of the proposed method, trace-driven simulations

were conducted. In this experiments, each flash cache block consists of 64

pages by default and the write buffer size ranges from 8M to 16M bytes.

Simulation were conducted on the TPC-C benchmark suit in the following

four cases.

1) write buffer size – 8 MB, database page size of workload – 16 KB

2) write buffer size – 16 MB, database page size of workload – 16 KB

3) write buffer size – 8 MB, database page size of workload – 8 KB

4) write buffer size – 16 MB, database page size of workload – 8 KB

２１

The simulation results of flash cache on TPC-benchmark (16 KB and 8

KB) for FlashTier and the proposed method are in Table 5.1 and 5.2. The

hit rate, GC count, CLWA, FLWA, total write amplification factor (TWAF),

and normalized average response time are contained in Table 5.1 and Table

5.2.

The simulation results of hit rate in both FlashTier and the proposed

method are illustrated in Figure 5.1. The hit rate of the proposed method

outperforms FlashTier by up to 10%. The proposed method achieves high

hit rate (up to 90%) in simulation results with the trace of compressed page

size. Moreover, the hit rate of the proposed method increases up to 96% in

the case of the 16 MB write buffer. The proposed method achieves low

TWAFs in all of cases. In 16 KB size of trace, the proposed method reduces

TWAF from 33.24 to 27.88. In addition, TWAF decreased from 15.65 to

11.83 in 8 KB size of traces. Moreover, CLWA and FLWA were compared.

The proposed method significantly reduces CLWA. On the other hands,

FLWA of the proposed method larger than that of FlahTier. The proposed

method decreases GC count. In 16 KB traces, GC count of the proposed

method is reduced by up to 51%. Additionally, GC count of the proposed

method is reduced by 40% in trace with compressed page size. Comparison

results of normalized average response time in both FlashTier and the

proposed method are described in Figure 5.2. The normalized average

response time of the proposed method is improved from 0.9 to 0.76 in

Figure 5.2(a).

２２

Table 5.1. Simulation results of TPC-C benchmark (16 KB)

Flash

Cache

Write

Buffer Size

Hit rate GC

count

CLWA FLWA TWAF Normalized average

response time

FlashTier 0 MB 85.0 % 199,975 35.00 13.33 48.34 1.0

8 MB 84.7 % 89,225 28.91 5.42 34.34 0.904

16 MB 84.93 % 87,750 28.53 4.70 33.24 0.896

Proposed

Method

8 MB 94.6 % 42,587 25.46 2.55 28.01 0.765

16 MB 94.58 % 42,125 25.34 2.53 27.88 0.764

Table 5.2. Simulation results of TPC-C benchmark (8 KB)

Flash

Cache

Write

Buffer Size

Hit rate GC

count

CLWA FLWA TWAF Normalized average

response time

FlashTier 0 MB 81.10% 316,888 4.94 24.34 29.29 1.0

8 MB 85.79% 113,240 15.65 0.0003 15.65 0.84

16 MB 85.69% 116,833 15.76 0.0003 15.76 0.84

Proposed

Method

8 MB 91.25% 77,677 2.16 9.67 11.83 0.80

16 MB 96.27% 70,725 2.16 10.55 12.72 0.77

２３

(a) TPC-C (16KB) (b) TPC-C (8KB)

 Figure 5.1. Hit rate

(a) TPC-C (16KB) (b) TPC-C (8KB)

 Figure 5.2. Normalized average response time

２４

There are two major reasons for the improvement. Firstly, benefits of the

proposed method come from identifying the read-frequent data. And then,

the proposed method manages flash cache by classifying block into WFDB

and RFDB. Thus, retaining data that are allocated in RFDB reduces cache

misses. Accordingly, hit rate increases and a substantial amount of writes

decreases. Secondly, the proposed method allocates space in accordance

with request size. Therefore, write amplification factor and GC count

decrease by utilizing the overall flash cache block. On the other hands,

FlashTier uses block-level caching and evicts the cached data too early, as

shown in the FLWA of FlashTier. The overhead of the proposed method

includes the computation time of the admission policy and recording

read/write count of write buffer. However, they are negligible.

２５

Chapter 5

Conclusions

Existing flash caches are widely employed in enterprise server system for

achieving high I/O performance. However, traditional flash caches incur

performance degradation due to small-sized read/write requests. A new

method of flash cache management improves overall performance

especially in write-intensive OLTP server.

The key insight is that flash cache has some flexibility in terms of how it

manages data. Contrary to conventional usage as storage, it does not

require to preserve the data of frequent write. Thus, the proposed method

classifies incoming data by using the read/write count during the write

buffer, and it then writes on affordable space in flash cache block.

In this thesis, SSC simulator was implemented to validate the proposed

method and it performed simulations several times. The experimental

results showed a comparison of FlashTier and the proposed method. The

proposed method improves the hit rate by 10% for flash cache. In addition,

it obtains half of the GC count and reduces a substantial amount of writing

on flash memory block. Lastly, it reduces normalized average response time

from 0.9 to 0.76.

２６

REFERENCE

[1] R. Koller, L. Marmol, R. Rangaswami, S. Sundararaman, N. Talagala and

M. Zhao, "Write policies for host-side flash caches", in Proc. 11th

USENIX Conf. File Storage Technol., pp.45 -58 2013

[2] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel, S.

Kleiman, C. Small, and M. Storer, “Mercury: Host-side flash caching for

the data center,” in Proc. 28th IEEE MSST, pp. 1–12, 2012.

[3] Saxena, Mohit, Michael M. Swift, and Yiying Zhang, "Flashtier: a

lightweight, consistent and durable storage cache," in Proceedings of the

7th ACM european conference on Computer Systems, 2012.

[4] J. Yang, N. Plasson, G. Gillis, N. Talagala, S. Sundararaman, and R.

Wood, “HEC: improving endurance of high performance flash-based

cache devices,” in International Systems and Storage Conference, p. 10,

2013.

[5] S.W. Lee, D.J. Park, T.S. Chung, D.H. Lee, S. Park and H.J. Song "A

Log Buffer Based Flash Translation Layer Using Fully Associative Sector

Translation", ACM Trans. Embedded Computing Systems, vol. 6, no.

3, 2007.

[6] J. Kim, J.M. Kim, S.H. Noh, S.L. Min and Y. Cho "A Space-Efficient

Flash Translation Layer for Compact Flash Systems", IEEE Trans.

Consumer Electronics, vol. 48, no. 2, pp.366 -375, 2002.

[7] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho and J. Kim, "A

Reconfigurable FTL (Flash Translation Layer) Architecture for NAND

２７

Flash-Based Applications," ACM Trans. Embedded Computing Systems,

vol. 7, no. 4, pp. 38:1-38:23, 2008.

[8] S. Lee, D. Shin, Y. Kim and J. Kim, "LAST: Locality-Aware Sector

Translation for NAND Flash Memory-Based Storage Systems," ACM

SIGOPS Operating Systems Rev., vol. 42, no. 6, pp. 36-42, 2008.

[9] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A Flash Translation Layer

Employing Demand-based Selective Caching of Page-level Address

Mappings,” In Proceedings of the International Conference on

Architectural Support for Programming Languages and Operating System

(ASPLOS), pages 229-240, March 2009.

[10] Y.G. Lee, D. Jung, D. Kang, and J.S. Kim, “μ-ftl:: a memory-efficient

flash translation layer supporting multiple mapping granularities,” In

EMSOFT '08: Proceedings of the 8th ACM international conference on

Embedded software, pages 21-30, 2008.

[11] Youngjae Kim, Brendan Tauras, Aayush Gupta, and Bhuvan Urgaonkar.

“FlashSim: A simulator for NAND Flash-based solid-state drives,” In

Proceedings of the 2009 First International Conference on Advances in

System Simulation, SIMUL '09, pages 125-131, 2009.

[12] T. Kgil and T. Mudge "FlashCache: A NAND flash memory file cache

for low power web servers", Proc. of the 2006 International Conference

on Compilers, Architecture and Synthesis for Embedded Systems (CASES

\'06), 2006

[13] TPC-C. http://www.tpc.org/tpcc. July of 1992.

[14] Intel Corp, Intel smart response technology,

http://download.intel.com/design/flash/nand/325554.pdf, 2011.

	1. Introduction
	2. Background and Motivation
	2.1 Host-side Flash Cache
	2.2 Access Pattern in the TPC Benchmark
	2.3 FTL and Write amplification
	2.4 Motivation

	3. Flash Cache Management in OLTP Server
	3.1 Admission Policy with read/write Count in the Write Buffer
	3.2 Eviction Policy
	3.3 Flash memory block management
	3.4 Page level caching

	4. Experimental Results
	4.1 Simulation Environments
	4.1.1 Trace of TPC benchmark
	4.1.2 Cache Controller and Flash Controller in simulator
	4.1.3 Memory Consumption

	4.2 Simulation Analysis

	5. Conclusions
	REFERENCE

<startpage>11
1. Introduction 1
2. Background and Motivation 5
 2.1 Host-side Flash Cache 5
 2.2 Access Pattern in the TPC Benchmark 6
 2.3 FTL and Write amplification 7
 2.4 Motivation 8
3. Flash Cache Management in OLTP Server 10
 3.1 Admission Policy with read/write Count in the Write Buffer 12
 3.2 Eviction Policy 13
 3.3 Flash memory block management 14
 3.4 Page level caching 15
4. Experimental Results 17
 4.1 Simulation Environments 17
 4.1.1 Trace of TPC benchmark 17
 4.1.2 Cache Controller and Flash Controller in simulator 18
 4.1.3 Memory Consumption 19
 4.2 Simulation Analysis 20
5. Conclusions 25
REFERENCE 26
</body>

